AI Agent 核心架构设计与实现原理深度解析:从感知到决策的完整技术栈

AI Agent 核心架构设计与实现原理深度解析:从感知到决策的完整技术栈

引言

随着人工智能技术的快速发展,AI Agent(人工智能代理)已经成为连接AI能力与实际应用场景的重要桥梁。从简单的聊天机器人到复杂的自主决策系统,AI Agent的核心架构设计直接决定了系统的智能水平、响应效率和扩展能力。本文将深入解析AI Agent的核心架构组件,包括感知模块、推理引擎、决策系统、执行器以及记忆管理等关键技术点,并通过完整的代码实现展示如何构建一个可扩展的AI Agent系统。

一、AI Agent架构总览与设计原则

1.1 核心架构组件

AI Agent的核心架构通常包含以下几个关键组件:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
from abc import ABC, abstractmethod
from typing import Dict, List, Any, Optional, Union
from dataclasses import dataclass, field
from enum import Enum
import asyncio
import json
import logging
from datetime import datetime, timedelta

class AgentState(Enum):
"""Agent状态枚举"""
IDLE = "idle"
PERCEIVING = "perceiving"
REASONING = "reasoning"
PLANNING = "planning"
EXECUTING = "executing"
LEARNING = "learning"
ERROR = "error"

@dataclass
class AgentContext:
"""Agent上下文信息"""
session_id: str
user_id: str
conversation_history: List[Dict[str, Any]] = field(default_factory=list)
current_task: Optional[str] = None
goals: List[str] = field(default_factory=list)
constraints: List[str] = field(default_factory=list)
metadata: Dict[str, Any] = field(default_factory=dict)
created_at: datetime = field(default_factory=datetime.now)
last_updated: datetime = field(default_factory=datetime.now)

@dataclass
class PerceptionInput:
"""感知输入数据结构"""
input_type: str # text, image, audio, multimodal
content: Any
timestamp: datetime = field(default_factory=datetime.now)
source: str = "user"
metadata: Dict[str, Any] = field(default_factory=dict)

@dataclass
class ActionOutput:
"""动作输出数据结构"""
action_type: str
content: Any
confidence: float
reasoning: str
timestamp: datetime = field(default_factory=datetime.now)
metadata: Dict[str, Any] = field(default_factory=dict)

class AIAgentCore:
"""AI Agent核心架构类"""

def __init__(self, agent_id: str, config: Dict[str, Any]):
self.agent_id = agent_id
self.config = config
self.state = AgentState.IDLE
self.context = None

# 核心组件初始化
self.perception_module = PerceptionModule(config.get('perception', {}))
self.reasoning_engine = ReasoningEngine(config.get('reasoning', {}))
self.planning_system = PlanningSystem(config.get('planning', {}))
self.execution_engine = ExecutionEngine(config.get('execution', {}))
self.memory_manager = MemoryManager(config.get('memory', {}))
self.learning_module = LearningModule(config.get('learning', {}))

# 日志配置
self.logger = logging.getLogger(f"agent.{agent_id}")

# 性能监控
self.metrics = {
'total_interactions': 0,
'successful_actions': 0,
'failed_actions': 0,
'avg_response_time': 0.0,
'last_activity': datetime.now()
}

async def initialize(self, context: AgentContext):
"""初始化Agent"""
self.context = context
self.state = AgentState.IDLE

# 初始化各个模块
await self.perception_module.initialize()
await self.reasoning_engine.initialize()
await self.planning_system.initialize()
await self.execution_engine.initialize()
await self.memory_manager.initialize(context)
await self.learning_module.initialize()

self.logger.info(f"Agent {self.agent_id} 初始化完成")

async def process_input(self, perception_input: PerceptionInput) -> ActionOutput:
"""处理输入的主要流程"""
start_time = datetime.now()

try:
self.metrics['total_interactions'] += 1

# 1. 感知阶段
self.state = AgentState.PERCEIVING
perceived_data = await self.perception_module.perceive(perception_input)

# 2. 推理阶段
self.state = AgentState.REASONING
reasoning_result = await self.reasoning_engine.reason(
perceived_data, self.context
)

# 3. 规划阶段
self.state = AgentState.PLANNING
action_plan = await self.planning_system.plan(
reasoning_result, self.context
)

# 4. 执行阶段
self.state = AgentState.EXECUTING
action_output = await self.execution_engine.execute(
action_plan, self.context
)

# 5. 学习阶段
self.state = AgentState.LEARNING
await self.learning_module.learn(
perception_input, action_output, self.context
)

# 6. 更新记忆
await self.memory_manager.store_interaction(
perception_input, action_output, reasoning_result
)

# 更新上下文
self.context.conversation_history.append({
'input': perception_input.__dict__,
'output': action_output.__dict__,
'timestamp': datetime.now().isoformat()
})
self.context.last_updated = datetime.now()

# 更新性能指标
processing_time = (datetime.now() - start_time).total_seconds()
self._update_metrics(processing_time, True)

self.state = AgentState.IDLE
return action_output

except Exception as e:
self.state = AgentState.ERROR
self.logger.error(f"处理输入时发生错误: {e}")

# 更新失败指标
processing_time = (datetime.now() - start_time).total_seconds()
self._update_metrics(processing_time, False)

# 返回错误响应
return ActionOutput(
action_type="error_response",
content=f"处理请求时发生错误: {str(e)}",
confidence=0.0,
reasoning="系统内部错误"
)

def _update_metrics(self, processing_time: float, success: bool):
"""更新性能指标"""
if success:
self.metrics['successful_actions'] += 1
else:
self.metrics['failed_actions'] += 1

# 更新平均响应时间
total_actions = self.metrics['successful_actions'] + self.metrics['failed_actions']
current_avg = self.metrics['avg_response_time']
self.metrics['avg_response_time'] = (
(current_avg * (total_actions - 1) + processing_time) / total_actions
)

self.metrics['last_activity'] = datetime.now()

async def get_status(self) -> Dict[str, Any]:
"""获取Agent状态信息"""
return {
'agent_id': self.agent_id,
'state': self.state.value,
'metrics': self.metrics,
'context_summary': {
'session_id': self.context.session_id if self.context else None,
'conversation_length': len(self.context.conversation_history) if self.context else 0,
'current_task': self.context.current_task if self.context else None
},
'component_status': {
'perception': await self.perception_module.get_status(),
'reasoning': await self.reasoning_engine.get_status(),
'planning': await self.planning_system.get_status(),
'execution': await self.execution_engine.get_status(),
'memory': await self.memory_manager.get_status(),
'learning': await self.learning_module.get_status()
}
}

1.2 设计原则

在设计AI Agent架构时,我们遵循以下核心原则:

  1. 模块化设计:每个组件职责单一,便于独立开发和测试
  2. 异步处理:支持高并发和非阻塞操作
  3. 可扩展性:支持插件式扩展和动态配置
  4. 容错性:具备完善的错误处理和恢复机制
  5. 可观测性:提供详细的监控和日志记录

二、感知模块:多模态输入处理与理解

感知模块是AI Agent与外界交互的第一道门户,负责处理和理解各种类型的输入数据。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
class PerceptionModule:
"""感知模块 - 处理多模态输入"""

def __init__(self, config: Dict[str, Any]):
self.config = config
self.processors = {}
self.embeddings_cache = {}

# 初始化各种输入处理器
self._init_processors()

def _init_processors(self):
"""初始化输入处理器"""
# 文本处理器
self.processors['text'] = TextProcessor(self.config.get('text', {}))

# 图像处理器
if self.config.get('enable_vision', False):
self.processors['image'] = ImageProcessor(self.config.get('image', {}))

# 音频处理器
if self.config.get('enable_audio', False):
self.processors['audio'] = AudioProcessor(self.config.get('audio', {}))

# 多模态融合处理器
self.processors['multimodal'] = MultimodalProcessor(self.config.get('multimodal', {}))

async def initialize(self):
"""初始化感知模块"""
for processor_name, processor in self.processors.items():
await processor.initialize()
logging.info(f"感知处理器 {processor_name} 初始化完成")

async def perceive(self, perception_input: PerceptionInput) -> Dict[str, Any]:
"""执行感知处理"""
input_type = perception_input.input_type

if input_type not in self.processors:
raise ValueError(f"不支持的输入类型: {input_type}")

processor = self.processors[input_type]

# 执行感知处理
processed_data = await processor.process(perception_input)

# 生成语义嵌入
embeddings = await self._generate_embeddings(processed_data)

# 执行意图识别
intent_analysis = await self._analyze_intent(processed_data)

# 提取实体信息
entity_extraction = await self._extract_entities(processed_data)

return {
'raw_input': perception_input,
'processed_data': processed_data,
'embeddings': embeddings,
'intent_analysis': intent_analysis,
'entity_extraction': entity_extraction,
'confidence': processed_data.get('confidence', 1.0),
'processing_time': processed_data.get('processing_time', 0.0)
}

async def _generate_embeddings(self, processed_data: Dict[str, Any]) -> Dict[str, Any]:
"""生成语义嵌入向量"""
# 这里可以集成各种嵌入模型
text_content = processed_data.get('text', '')

# 简化的嵌入生成(实际应该调用真实的嵌入模型)
embedding_vector = [0.1] * 768 # 模拟768维嵌入向量

return {
'text_embedding': embedding_vector,
'embedding_model': 'text-embedding-ada-002',
'dimension': 768
}

async def _analyze_intent(self, processed_data: Dict[str, Any]) -> Dict[str, Any]:
"""分析用户意图"""
text_content = processed_data.get('text', '').lower()

# 简化的意图识别逻辑
intent_patterns = {
'question': ['什么', '如何', '为什么', '怎么', '?', '?'],
'request': ['请', '帮我', '能否', '可以'],
'command': ['执行', '运行', '开始', '停止'],
'information': ['告诉我', '显示', '查看', '获取']
}

detected_intents = []
for intent, patterns in intent_patterns.items():
if any(pattern in text_content for pattern in patterns):
detected_intents.append(intent)

primary_intent = detected_intents[0] if detected_intents else 'unknown'

return {
'primary_intent': primary_intent,
'all_intents': detected_intents,
'confidence': 0.8 if detected_intents else 0.3
}

async def _extract_entities(self, processed_data: Dict[str, Any]) -> Dict[str, Any]:
"""提取实体信息"""
text_content = processed_data.get('text', '')

# 简化的实体提取(实际应该使用NER模型)
entities = {
'persons': [],
'organizations': [],
'locations': [],
'dates': [],
'numbers': []
}

# 简单的数字提取
import re
numbers = re.findall(r'\d+', text_content)
entities['numbers'] = [{'value': num, 'start': 0, 'end': 0} for num in numbers]

return entities

async def get_status(self) -> Dict[str, Any]:
"""获取感知模块状态"""
return {
'enabled_processors': list(self.processors.keys()),
'cache_size': len(self.embeddings_cache),
'status': 'active'
}

class TextProcessor:
"""文本处理器"""

def __init__(self, config: Dict[str, Any]):
self.config = config
self.max_length = config.get('max_length', 4096)

async def initialize(self):
"""初始化文本处理器"""
pass

async def process(self, perception_input: PerceptionInput) -> Dict[str, Any]:
"""处理文本输入"""
text_content = str(perception_input.content)

# 文本预处理
cleaned_text = self._clean_text(text_content)

# 文本分割(如果超长)
chunks = self._split_text(cleaned_text)

return {
'text': cleaned_text,
'chunks': chunks,
'length': len(cleaned_text),
'language': self._detect_language(cleaned_text),
'confidence': 1.0,
'processing_time': 0.01
}

def _clean_text(self, text: str) -> str:
"""清理文本"""
# 移除多余空白字符
import re
text = re.sub(r'\s+', ' ', text.strip())
return text

def _split_text(self, text: str) -> List[str]:
"""分割长文本"""
if len(text) <= self.max_length:
return [text]

chunks = []
for i in range(0, len(text), self.max_length):
chunks.append(text[i:i + self.max_length])

return chunks

def _detect_language(self, text: str) -> str:
"""检测语言(简化版)"""
# 简化的语言检测
chinese_chars = len([c for c in text if '\u4e00' <= c <= '\u9fff'])
if chinese_chars > len(text) * 0.3:
return 'zh'
return 'en'

class ImageProcessor:
"""图像处理器"""

def __init__(self, config: Dict[str, Any]):
self.config = config

async def initialize(self):
"""初始化图像处理器"""
pass

async def process(self, perception_input: PerceptionInput) -> Dict[str, Any]:
"""处理图像输入"""
# 这里应该集成图像理解模型
return {
'image_description': "图像处理功能待实现",
'objects': [],
'confidence': 0.5,
'processing_time': 0.1
}

class AudioProcessor:
"""音频处理器"""

def __init__(self, config: Dict[str, Any]):
self.config = config

async def initialize(self):
"""初始化音频处理器"""
pass

async def process(self, perception_input: PerceptionInput) -> Dict[str, Any]:
"""处理音频输入"""
# 这里应该集成语音识别模型
return {
'transcription': "音频处理功能待实现",
'confidence': 0.5,
'processing_time': 0.2
}

class MultimodalProcessor:
"""多模态处理器"""

def __init__(self, config: Dict[str, Any]):
self.config = config

async def initialize(self):
"""初始化多模态处理器"""
pass

async def process(self, perception_input: PerceptionInput) -> Dict[str, Any]:
"""处理多模态输入"""
# 这里应该集成多模态理解模型
return {
'multimodal_understanding': "多模态处理功能待实现",
'confidence': 0.5,
'processing_time': 0.3
}

三、推理引擎:知识整合与逻辑推理

推理引擎是AI Agent的”大脑”,负责整合感知信息、调用知识库,并进行逻辑推理。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
class ReasoningEngine:
"""推理引擎 - 核心推理逻辑"""

def __init__(self, config: Dict[str, Any]):
self.config = config
self.knowledge_base = KnowledgeBase(config.get('knowledge', {}))
self.reasoning_strategies = {}
self.llm_client = None

# 初始化推理策略
self._init_reasoning_strategies()

def _init_reasoning_strategies(self):
"""初始化推理策略"""
self.reasoning_strategies = {
'rule_based': RuleBasedReasoning(self.config.get('rules', {})),
'case_based': CaseBasedReasoning(self.config.get('cases', {})),
'llm_based': LLMBasedReasoning(self.config.get('llm', {})),
'hybrid': HybridReasoning(self.config.get('hybrid', {}))
}

async def initialize(self):
"""初始化推理引擎"""
await self.knowledge_base.initialize()

for strategy_name, strategy in self.reasoning_strategies.items():
await strategy.initialize()
logging.info(f"推理策略 {strategy_name} 初始化完成")

async def reason(self, perceived_data: Dict[str, Any],
context: AgentContext) -> Dict[str, Any]:
"""执行推理过程"""
reasoning_start = datetime.now()

# 1. 知识检索
relevant_knowledge = await self.knowledge_base.retrieve(
perceived_data, context
)

# 2. 选择推理策略
strategy_name = self._select_reasoning_strategy(
perceived_data, context, relevant_knowledge
)

strategy = self.reasoning_strategies[strategy_name]

# 3. 执行推理
reasoning_result = await strategy.reason(
perceived_data, context, relevant_knowledge
)

# 4. 推理结果后处理
processed_result = await self._post_process_reasoning(
reasoning_result, perceived_data, context
)

reasoning_time = (datetime.now() - reasoning_start).total_seconds()

return {
'strategy_used': strategy_name,
'reasoning_result': processed_result,
'relevant_knowledge': relevant_knowledge,
'confidence': processed_result.get('confidence', 0.5),
'reasoning_time': reasoning_time,
'reasoning_chain': processed_result.get('reasoning_chain', [])
}

def _select_reasoning_strategy(self, perceived_data: Dict[str, Any],
context: AgentContext,
knowledge: Dict[str, Any]) -> str:
"""选择推理策略"""
intent = perceived_data.get('intent_analysis', {}).get('primary_intent', 'unknown')

# 基于意图和上下文选择推理策略
if intent == 'question' and knowledge.get('factual_knowledge'):
return 'rule_based'
elif intent == 'request' and knowledge.get('similar_cases'):
return 'case_based'
elif intent in ['command', 'complex_reasoning']:
return 'llm_based'
else:
return 'hybrid'

async def _post_process_reasoning(self, reasoning_result: Dict[str, Any],
perceived_data: Dict[str, Any],
context: AgentContext) -> Dict[str, Any]:
"""推理结果后处理"""
# 置信度校准
confidence = reasoning_result.get('confidence', 0.5)

# 基于历史成功率调整置信度
historical_success = context.metadata.get('reasoning_success_rate', 0.8)
adjusted_confidence = confidence * historical_success

reasoning_result['confidence'] = min(adjusted_confidence, 1.0)

# 添加推理链追踪
if 'reasoning_chain' not in reasoning_result:
reasoning_result['reasoning_chain'] = [
f"使用策略: {reasoning_result.get('strategy', 'unknown')}",
f"置信度: {confidence:.2f} -> {adjusted_confidence:.2f}"
]

return reasoning_result

async def get_status(self) -> Dict[str, Any]:
"""获取推理引擎状态"""
return {
'available_strategies': list(self.reasoning_strategies.keys()),
'knowledge_base_status': await self.knowledge_base.get_status(),
'status': 'active'
}

class KnowledgeBase:
"""知识库管理"""

def __init__(self, config: Dict[str, Any]):
self.config = config
self.factual_knowledge = {}
self.procedural_knowledge = {}
self.episodic_knowledge = []

async def initialize(self):
"""初始化知识库"""
# 加载预定义知识
await self._load_factual_knowledge()
await self._load_procedural_knowledge()

async def _load_factual_knowledge(self):
"""加载事实性知识"""
self.factual_knowledge = {
'definitions': {
'AI': '人工智能是模拟人类智能的计算机系统',
'Agent': '能够感知环境并采取行动的自主实体'
},
'facts': {
'python_version': '3.9+',
'framework': 'asyncio'
}
}

async def _load_procedural_knowledge(self):
"""加载程序性知识"""
self.procedural_knowledge = {
'how_to_debug': [
'1. 识别问题症状',
'2. 收集相关信息',
'3. 形成假设',
'4. 测试假设',
'5. 实施解决方案'
],
'how_to_optimize': [
'1. 性能分析',
'2. 识别瓶颈',
'3. 优化策略制定',
'4. 实施优化',
'5. 效果验证'
]
}

async def retrieve(self, perceived_data: Dict[str, Any],
context: AgentContext) -> Dict[str, Any]:
"""检索相关知识"""
query_text = perceived_data.get('processed_data', {}).get('text', '')

# 简化的知识检索
relevant_facts = {}
relevant_procedures = {}

# 检索事实性知识
for category, facts in self.factual_knowledge.items():
for key, value in facts.items():
if key.lower() in query_text.lower():
relevant_facts[key] = value

# 检索程序性知识
for procedure, steps in self.procedural_knowledge.items():
if any(keyword in query_text.lower()
for keyword in procedure.replace('_', ' ').split()):
relevant_procedures[procedure] = steps

return {
'factual_knowledge': relevant_facts,
'procedural_knowledge': relevant_procedures,
'episodic_knowledge': self._retrieve_episodic_knowledge(context),
'retrieval_confidence': 0.8 if relevant_facts or relevant_procedures else 0.3
}

def _retrieve_episodic_knowledge(self, context: AgentContext) -> List[Dict[str, Any]]:
"""检索情景记忆"""
# 返回最近的对话历史作为情景知识
return context.conversation_history[-5:] if context else []

async def get_status(self) -> Dict[str, Any]:
"""获取知识库状态"""
return {
'factual_knowledge_count': sum(len(facts) for facts in self.factual_knowledge.values()),
'procedural_knowledge_count': len(self.procedural_knowledge),
'episodic_knowledge_count': len(self.episodic_knowledge),
'status': 'active'
}

class RuleBasedReasoning:
"""基于规则的推理"""

def __init__(self, config: Dict[str, Any]):
self.config = config
self.rules = []

async def initialize(self):
"""初始化规则库"""
self.rules = [
{
'condition': lambda data: 'python' in data.get('processed_data', {}).get('text', '').lower(),
'action': 'provide_python_help',
'confidence': 0.9
},
{
'condition': lambda data: 'debug' in data.get('processed_data', {}).get('text', '').lower(),
'action': 'provide_debug_guidance',
'confidence': 0.8
}
]

async def reason(self, perceived_data: Dict[str, Any],
context: AgentContext,
knowledge: Dict[str, Any]) -> Dict[str, Any]:
"""执行基于规则的推理"""
matched_rules = []

for rule in self.rules:
if rule['condition'](perceived_data):
matched_rules.append(rule)

if matched_rules:
# 选择置信度最高的规则
best_rule = max(matched_rules, key=lambda r: r['confidence'])

return {
'action': best_rule['action'],
'confidence': best_rule['confidence'],
'reasoning_chain': [f"匹配规则: {best_rule['action']}"],
'strategy': 'rule_based'
}

return {
'action': 'no_rule_matched',
'confidence': 0.1,
'reasoning_chain': ['未找到匹配的规则'],
'strategy': 'rule_based'
}

class CaseBasedReasoning:
"""基于案例的推理"""

def __init__(self, config: Dict[str, Any]):
self.config = config
self.cases = []

async def initialize(self):
"""初始化案例库"""
self.cases = [
{
'problem': 'python代码调试',
'solution': '使用断点和日志进行调试',
'similarity_threshold': 0.7
}
]

async def reason(self, perceived_data: Dict[str, Any],
context: AgentContext,
knowledge: Dict[str, Any]) -> Dict[str, Any]:
"""执行基于案例的推理"""
query_text = perceived_data.get('processed_data', {}).get('text', '')

# 简化的案例匹配
best_case = None
best_similarity = 0.0

for case in self.cases:
similarity = self._calculate_similarity(query_text, case['problem'])
if similarity > best_similarity and similarity > case['similarity_threshold']:
best_similarity = similarity
best_case = case

if best_case:
return {
'action': 'apply_case_solution',
'solution': best_case['solution'],
'confidence': best_similarity,
'reasoning_chain': [f"找到相似案例: {best_case['problem']}"],
'strategy': 'case_based'
}

return {
'action': 'no_case_found',
'confidence': 0.2,
'reasoning_chain': ['未找到相似案例'],
'strategy': 'case_based'
}

def _calculate_similarity(self, text1: str, text2: str) -> float:
"""计算文本相似度(简化版)"""
words1 = set(text1.lower().split())
words2 = set(text2.lower().split())

if not words1 or not words2:
return 0.0

intersection = words1.intersection(words2)
union = words1.union(words2)

return len(intersection) / len(union)

class LLMBasedReasoning:
"""基于大语言模型的推理"""

def __init__(self, config: Dict[str, Any]):
self.config = config
self.model_name = config.get('model_name', 'gpt-3.5-turbo')

async def initialize(self):
"""初始化LLM客户端"""
# 这里应该初始化实际的LLM客户端
pass

async def reason(self, perceived_data: Dict[str, Any],
context: AgentContext,
knowledge: Dict[str, Any]) -> Dict[str, Any]:
"""执行基于LLM的推理"""
# 构建提示词
prompt = self._build_prompt(perceived_data, context, knowledge)

# 调用LLM(这里使用模拟响应)
llm_response = await self._call_llm(prompt)

return {
'action': 'llm_response',
'response': llm_response,
'confidence': 0.7,
'reasoning_chain': [f"LLM推理: {self.model_name}"],
'strategy': 'llm_based'
}

def _build_prompt(self, perceived_data: Dict[str, Any],
context: AgentContext,
knowledge: Dict[str, Any]) -> str:
"""构建LLM提示词"""
user_input = perceived_data.get('processed_data', {}).get('text', '')

prompt = f"""
你是一个智能助手,请根据以下信息回答用户问题:

用户输入: {user_input}

相关知识:
{json.dumps(knowledge.get('factual_knowledge', {}), ensure_ascii=False, indent=2)}

请提供有帮助的回答。
"""

return prompt.strip()

async def _call_llm(self, prompt: str) -> str:
"""调用LLM(模拟实现)"""
# 这里应该调用实际的LLM API
return f"基于LLM的回答: 我理解您的问题,这里是一个模拟的智能回答。"

class HybridReasoning:
"""混合推理策略"""

def __init__(self, config: Dict[str, Any]):
self.config = config

async def initialize(self):
"""初始化混合推理"""
pass

async def reason(self, perceived_data: Dict[str, Any],
context: AgentContext,
knowledge: Dict[str, Any]) -> Dict[str, Any]:
"""执行混合推理"""
# 结合多种推理策略的结果
return {
'action': 'hybrid_response',
'response': '混合推理策略的回答',
'confidence': 0.6,
'reasoning_chain': ['混合多种推理策略'],
'strategy': 'hybrid'
}

四、规划系统:目标分解与行动计划

规划系统负责将推理结果转化为具体的行动计划,支持复杂任务的分解和执行。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
class PlanningSystem:
"""规划系统 - 任务分解与行动计划"""

def __init__(self, config: Dict[str, Any]):
self.config = config
self.planners = {}
self.active_plans = {}

# 初始化规划器
self._init_planners()

def _init_planners(self):
"""初始化规划器"""
self.planners = {
'simple': SimplePlanner(self.config.get('simple', {})),
'hierarchical': HierarchicalPlanner(self.config.get('hierarchical', {})),
'reactive': ReactivePlanner(self.config.get('reactive', {})),
'goal_oriented': GoalOrientedPlanner(self.config.get('goal_oriented', {}))
}

async def initialize(self):
"""初始化规划系统"""
for planner_name, planner in self.planners.items():
await planner.initialize()
logging.info(f"规划器 {planner_name} 初始化完成")

async def plan(self, reasoning_result: Dict[str, Any],
context: AgentContext) -> Dict[str, Any]:
"""生成行动计划"""
planning_start = datetime.now()

# 1. 选择规划策略
planner_type = self._select_planner(reasoning_result, context)
planner = self.planners[planner_type]

# 2. 生成计划
action_plan = await planner.create_plan(reasoning_result, context)

# 3. 验证计划可行性
validated_plan = await self._validate_plan(action_plan, context)

# 4. 优化计划
optimized_plan = await self._optimize_plan(validated_plan, context)

planning_time = (datetime.now() - planning_start).total_seconds()

# 5. 存储活跃计划
plan_id = f"plan_{int(datetime.now().timestamp() * 1000)}"
self.active_plans[plan_id] = optimized_plan

return {
'plan_id': plan_id,
'planner_type': planner_type,
'action_plan': optimized_plan,
'planning_time': planning_time,
'estimated_execution_time': optimized_plan.get('estimated_time', 0.0),
'confidence': optimized_plan.get('confidence', 0.5)
}

def _select_planner(self, reasoning_result: Dict[str, Any],
context: AgentContext) -> str:
"""选择规划器"""
action = reasoning_result.get('reasoning_result', {}).get('action', '')

# 基于动作类型选择规划器
if 'complex' in action or len(context.goals) > 1:
return 'hierarchical'
elif 'urgent' in action or 'immediate' in action:
return 'reactive'
elif context.current_task and 'goal' in context.current_task:
return 'goal_oriented'
else:
return 'simple'

async def _validate_plan(self, action_plan: Dict[str, Any],
context: AgentContext) -> Dict[str, Any]:
"""验证计划可行性"""
# 检查资源约束
if not self._check_resource_constraints(action_plan):
action_plan['warnings'] = action_plan.get('warnings', []) + ['资源约束检查失败']

# 检查时间约束
if not self._check_time_constraints(action_plan, context):
action_plan['warnings'] = action_plan.get('warnings', []) + ['时间约束检查失败']

# 检查依赖关系
if not self._check_dependencies(action_plan):
action_plan['warnings'] = action_plan.get('warnings', []) + ['依赖关系检查失败']

return action_plan

def _check_resource_constraints(self, action_plan: Dict[str, Any]) -> bool:
"""检查资源约束"""
# 简化的资源检查
required_resources = action_plan.get('required_resources', [])
available_resources = ['cpu', 'memory', 'network'] # 模拟可用资源

return all(resource in available_resources for resource in required_resources)

def _check_time_constraints(self, action_plan: Dict[str, Any],
context: AgentContext) -> bool:
"""检查时间约束"""
estimated_time = action_plan.get('estimated_time', 0.0)
max_allowed_time = context.metadata.get('max_execution_time', 300.0) # 5分钟

return estimated_time <= max_allowed_time

def _check_dependencies(self, action_plan: Dict[str, Any]) -> bool:
"""检查依赖关系"""
steps = action_plan.get('steps', [])

# 检查步骤间的依赖关系
for i, step in enumerate(steps):
dependencies = step.get('dependencies', [])
for dep in dependencies:
if dep >= i: # 依赖的步骤必须在当前步骤之前
return False

return True

async def _optimize_plan(self, action_plan: Dict[str, Any],
context: AgentContext) -> Dict[str, Any]:
"""优化计划"""
# 并行化可并行的步骤
optimized_steps = self._parallelize_steps(action_plan.get('steps', []))

# 重新估算执行时间
estimated_time = self._estimate_execution_time(optimized_steps)

action_plan['steps'] = optimized_steps
action_plan['estimated_time'] = estimated_time
action_plan['optimizations_applied'] = ['step_parallelization', 'time_estimation']

return action_plan

def _parallelize_steps(self, steps: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""并行化步骤"""
# 简化的并行化逻辑
for step in steps:
if not step.get('dependencies'):
step['can_parallel'] = True
else:
step['can_parallel'] = False

return steps

def _estimate_execution_time(self, steps: List[Dict[str, Any]]) -> float:
"""估算执行时间"""
total_time = 0.0
parallel_time = 0.0

for step in steps:
step_time = step.get('estimated_time', 1.0)
if step.get('can_parallel', False):
parallel_time = max(parallel_time, step_time)
else:
total_time += step_time

return total_time + parallel_time

async def get_status(self) -> Dict[str, Any]:
"""获取规划系统状态"""
return {
'available_planners': list(self.planners.keys()),
'active_plans_count': len(self.active_plans),
'status': 'active'
}

class SimplePlanner:
"""简单规划器"""

def __init__(self, config: Dict[str, Any]):
self.config = config

async def initialize(self):
"""初始化简单规划器"""
pass

async def create_plan(self, reasoning_result: Dict[str, Any],
context: AgentContext) -> Dict[str, Any]:
"""创建简单计划"""
action = reasoning_result.get('reasoning_result', {}).get('action', 'default_action')

return {
'type': 'simple',
'steps': [
{
'id': 1,
'action': action,
'description': f'执行动作: {action}',
'estimated_time': 1.0,
'required_resources': ['cpu'],
'dependencies': []
}
],
'estimated_time': 1.0,
'confidence': 0.8
}

class HierarchicalPlanner:
"""分层规划器"""

def __init__(self, config: Dict[str, Any]):
self.config = config

async def initialize(self):
"""初始化分层规划器"""
pass

async def create_plan(self, reasoning_result: Dict[str, Any],
context: AgentContext) -> Dict[str, Any]:
"""创建分层计划"""
# 分解为多个子任务
return {
'type': 'hierarchical',
'steps': [
{
'id': 1,
'action': 'analyze_problem',
'description': '分析问题',
'estimated_time': 0.5,
'required_resources': ['cpu'],
'dependencies': []
},
{
'id': 2,
'action': 'generate_solution',
'description': '生成解决方案',
'estimated_time': 1.0,
'required_resources': ['cpu', 'memory'],
'dependencies': [1]
},
{
'id': 3,
'action': 'validate_solution',
'description': '验证解决方案',
'estimated_time': 0.5,
'required_resources': ['cpu'],
'dependencies': [2]
}
],
'estimated_time': 2.0,
'confidence': 0.7
}

class ReactivePlanner:
"""反应式规划器"""

def __init__(self, config: Dict[str, Any]):
self.config = config

async def initialize(self):
"""初始化反应式规划器"""
pass

async def create_plan(self, reasoning_result: Dict[str, Any],
context: AgentContext) -> Dict[str, Any]:
"""创建反应式计划"""
return {
'type': 'reactive',
'steps': [
{
'id': 1,
'action': 'immediate_response',
'description': '立即响应',
'estimated_time': 0.1,
'required_resources': ['cpu'],
'dependencies': [],
'priority': 'high'
}
],
'estimated_time': 0.1,
'confidence': 0.9
}

class GoalOrientedPlanner:
"""目标导向规划器"""

def __init__(self, config: Dict[str, Any]):
self.config = config

async def initialize(self):
"""初始化目标导向规划器"""
pass

async def create_plan(self, reasoning_result: Dict[str, Any],
context: AgentContext) -> Dict[str, Any]:
"""创建目标导向计划"""
goals = context.goals if context else ['完成任务']

steps = []
for i, goal in enumerate(goals):
steps.append({
'id': i + 1,
'action': f'achieve_goal_{i+1}',
'description': f'实现目标: {goal}',
'estimated_time': 1.0,
'required_resources': ['cpu'],
'dependencies': list(range(1, i + 1)) if i > 0 else []
})

return {
'type': 'goal_oriented',
'steps': steps,
'estimated_time': len(steps) * 1.0,
'confidence': 0.6
}

五、执行引擎与记忆管理

执行引擎负责将计划转化为具体的行动,而记忆管理则确保Agent能够从历史经验中学习。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
class ExecutionEngine:
"""执行引擎 - 行动执行与监控"""

def __init__(self, config: Dict[str, Any]):
self.config = config
self.executors = {}
self.execution_history = []

# 初始化执行器
self._init_executors()

def _init_executors(self):
"""初始化执行器"""
self.executors = {
'text_response': TextResponseExecutor(self.config.get('text_response', {})),
'api_call': APICallExecutor(self.config.get('api_call', {})),
'file_operation': FileOperationExecutor(self.config.get('file_operation', {})),
'computation': ComputationExecutor(self.config.get('computation', {}))
}

async def initialize(self):
"""初始化执行引擎"""
for executor_name, executor in self.executors.items():
await executor.initialize()
logging.info(f"执行器 {executor_name} 初始化完成")

async def execute(self, action_plan: Dict[str, Any],
context: AgentContext) -> ActionOutput:
"""执行行动计划"""
execution_start = datetime.now()
plan_id = action_plan.get('plan_id', 'unknown')

try:
# 执行计划中的所有步骤
execution_results = []

for step in action_plan.get('action_plan', {}).get('steps', []):
step_result = await self._execute_step(step, context)
execution_results.append(step_result)

# 如果步骤失败且不允许继续,则停止执行
if not step_result.get('success', False) and not step.get('continue_on_failure', False):
break

# 生成最终输出
final_output = await self._generate_final_output(
execution_results, action_plan, context
)

execution_time = (datetime.now() - execution_start).total_seconds()

# 记录执行历史
self.execution_history.append({
'plan_id': plan_id,
'execution_time': execution_time,
'success': final_output.confidence > 0.5,
'timestamp': datetime.now()
})

return final_output

except Exception as e:
self.logger.error(f"执行计划 {plan_id} 时发生错误: {e}")

return ActionOutput(
action_type="execution_error",
content=f"执行失败: {str(e)}",
confidence=0.0,
reasoning="执行过程中发生异常"
)

async def _execute_step(self, step: Dict[str, Any],
context: AgentContext) -> Dict[str, Any]:
"""执行单个步骤"""
action = step.get('action', 'unknown')

# 选择合适的执行器
executor_type = self._select_executor(action)
executor = self.executors.get(executor_type)

if not executor:
return {
'success': False,
'error': f'未找到执行器: {executor_type}',
'action': action
}

try:
result = await executor.execute(step, context)
return {
'success': True,
'result': result,
'action': action,
'executor_type': executor_type
}
except Exception as e:
return {
'success': False,
'error': str(e),
'action': action,
'executor_type': executor_type
}

def _select_executor(self, action: str) -> str:
"""选择执行器"""
action_lower = action.lower()

if any(keyword in action_lower for keyword in ['response', 'answer', 'reply']):
return 'text_response'
elif any(keyword in action_lower for keyword in ['api', 'call', 'request']):
return 'api_call'
elif any(keyword in action_lower for keyword in ['file', 'read', 'write']):
return 'file_operation'
elif any(keyword in action_lower for keyword in ['calculate', 'compute', 'analyze']):
return 'computation'
else:
return 'text_response' # 默认执行器

async def _generate_final_output(self, execution_results: List[Dict[str, Any]],
action_plan: Dict[str, Any],
context: AgentContext) -> ActionOutput:
"""生成最终输出"""
successful_results = [r for r in execution_results if r.get('success', False)]

if not successful_results:
return ActionOutput(
action_type="execution_failure",
content="所有执行步骤都失败了",
confidence=0.0,
reasoning="执行计划中的所有步骤都未能成功完成"
)

# 合并成功的执行结果
combined_content = self._combine_results(successful_results)

# 计算置信度
success_rate = len(successful_results) / len(execution_results)
base_confidence = action_plan.get('confidence', 0.5)
final_confidence = base_confidence * success_rate

return ActionOutput(
action_type="successful_execution",
content=combined_content,
confidence=final_confidence,
reasoning=f"成功执行了 {len(successful_results)}/{len(execution_results)} 个步骤"
)

def _combine_results(self, results: List[Dict[str, Any]]) -> str:
"""合并执行结果"""
combined_parts = []

for result in results:
result_content = result.get('result', {}).get('content', '')
if result_content:
combined_parts.append(str(result_content))

return '\n'.join(combined_parts) if combined_parts else '执行完成'

async def get_status(self) -> Dict[str, Any]:
"""获取执行引擎状态"""
recent_executions = self.execution_history[-10:] # 最近10次执行
success_rate = sum(1 for ex in recent_executions if ex['success']) / len(recent_executions) if recent_executions else 0.0

return {
'available_executors': list(self.executors.keys()),
'execution_history_count': len(self.execution_history),
'recent_success_rate': success_rate,
'status': 'active'
}

class TextResponseExecutor:
"""文本响应执行器"""

def __init__(self, config: Dict[str, Any]):
self.config = config

async def initialize(self):
"""初始化文本响应执行器"""
pass

async def execute(self, step: Dict[str, Any], context: AgentContext) -> Dict[str, Any]:
"""执行文本响应"""
action = step.get('action', '')
description = step.get('description', '')

# 生成响应内容
if 'error' in action:
content = "抱歉,处理您的请求时遇到了问题。"
elif 'help' in action:
content = "我很乐意为您提供帮助。请告诉我您需要什么协助。"
else:
content = f"正在执行: {description}"

return {
'content': content,
'action_type': 'text_response',
'execution_time': 0.01
}

class APICallExecutor:
"""API调用执行器"""

def __init__(self, config: Dict[str, Any]):
self.config = config
self.timeout = config.get('timeout', 30.0)

async def initialize(self):
"""初始化API调用执行器"""
pass

async def execute(self, step: Dict[str, Any], context: AgentContext) -> Dict[str, Any]:
"""执行API调用"""
# 模拟API调用
await asyncio.sleep(0.1) # 模拟网络延迟

return {
'content': 'API调用执行完成',
'action_type': 'api_call',
'execution_time': 0.1,
'api_response': {'status': 'success', 'data': {}}
}

class FileOperationExecutor:
"""文件操作执行器"""

def __init__(self, config: Dict[str, Any]):
self.config = config
self.allowed_paths = config.get('allowed_paths', [])

async def initialize(self):
"""初始化文件操作执行器"""
pass

async def execute(self, step: Dict[str, Any], context: AgentContext) -> Dict[str, Any]:
"""执行文件操作"""
# 模拟文件操作
return {
'content': '文件操作执行完成',
'action_type': 'file_operation',
'execution_time': 0.05
}

class ComputationExecutor:
"""计算执行器"""

def __init__(self, config: Dict[str, Any]):
self.config = config

async def initialize(self):
"""初始化计算执行器"""
pass

async def execute(self, step: Dict[str, Any], context: AgentContext) -> Dict[str, Any]:
"""执行计算任务"""
# 模拟计算过程
await asyncio.sleep(0.2) # 模拟计算时间

return {
'content': '计算任务执行完成',
'action_type': 'computation',
'execution_time': 0.2,
'computation_result': {'value': 42}
}

class MemoryManager:
"""记忆管理器 - 存储和检索历史信息"""

def __init__(self, config: Dict[str, Any]):
self.config = config
self.short_term_memory = []
self.long_term_memory = {}
self.working_memory = {}
self.max_short_term_size = config.get('max_short_term_size', 100)
self.max_working_memory_size = config.get('max_working_memory_size', 50)

async def initialize(self, context: AgentContext):
"""初始化记忆管理器"""
self.working_memory['session_id'] = context.session_id
self.working_memory['user_id'] = context.user_id

# 加载用户的长期记忆
await self._load_long_term_memory(context.user_id)

async def _load_long_term_memory(self, user_id: str):
"""加载长期记忆"""
# 这里应该从持久化存储中加载
self.long_term_memory[user_id] = {
'preferences': {},
'learned_patterns': [],
'interaction_history': []
}

async def store_interaction(self, perception_input: PerceptionInput,
action_output: ActionOutput,
reasoning_result: Dict[str, Any]):
"""存储交互记录"""
interaction_record = {
'timestamp': datetime.now(),
'input': {
'type': perception_input.input_type,
'content_summary': str(perception_input.content)[:100],
'source': perception_input.source
},
'output': {
'action_type': action_output.action_type,
'content_summary': str(action_output.content)[:100],
'confidence': action_output.confidence
},
'reasoning': {
'strategy': reasoning_result.get('strategy_used', 'unknown'),
'confidence': reasoning_result.get('confidence', 0.0)
}
}

# 存储到短期记忆
self.short_term_memory.append(interaction_record)

# 维护短期记忆大小
if len(self.short_term_memory) > self.max_short_term_size:
# 将最旧的记录移到长期记忆
old_record = self.short_term_memory.pop(0)
await self._archive_to_long_term(old_record)

async def _archive_to_long_term(self, record: Dict[str, Any]):
"""归档到长期记忆"""
user_id = self.working_memory.get('user_id', 'unknown')

if user_id not in self.long_term_memory:
self.long_term_memory[user_id] = {
'preferences': {},
'learned_patterns': [],
'interaction_history': []
}

self.long_term_memory[user_id]['interaction_history'].append(record)

async def retrieve_relevant_memories(self, query: str, limit: int = 5) -> List[Dict[str, Any]]:
"""检索相关记忆"""
relevant_memories = []

# 从短期记忆中搜索
for memory in self.short_term_memory[-limit:]:
if self._is_relevant(query, memory):
relevant_memories.append(memory)

return relevant_memories

def _is_relevant(self, query: str, memory: Dict[str, Any]) -> bool:
"""判断记忆是否相关"""
query_lower = query.lower()

# 检查输入内容
input_content = memory.get('input', {}).get('content_summary', '').lower()
if any(word in input_content for word in query_lower.split()):
return True

# 检查输出内容
output_content = memory.get('output', {}).get('content_summary', '').lower()
if any(word in output_content for word in query_lower.split()):
return True

return False

async def update_working_memory(self, key: str, value: Any):
"""更新工作记忆"""
self.working_memory[key] = value

# 维护工作记忆大小
if len(self.working_memory) > self.max_working_memory_size:
# 移除最旧的非关键项
critical_keys = ['session_id', 'user_id', 'current_task']
for k in list(self.working_memory.keys()):
if k not in critical_keys:
del self.working_memory[k]
break

async def get_status(self) -> Dict[str, Any]:
"""获取记忆管理器状态"""
return {
'short_term_memory_count': len(self.short_term_memory),
'long_term_memory_users': len(self.long_term_memory),
'working_memory_size': len(self.working_memory),
'status': 'active'
}

class LearningModule:
"""学习模块 - 从经验中学习和改进"""

def __init__(self, config: Dict[str, Any]):
self.config = config
self.learning_strategies = {}
self.performance_metrics = {
'accuracy': [],
'response_time': [],
'user_satisfaction': []
}

# 初始化学习策略
self._init_learning_strategies()

def _init_learning_strategies(self):
"""初始化学习策略"""
self.learning_strategies = {
'reinforcement': ReinforcementLearning(self.config.get('reinforcement', {})),
'pattern_recognition': PatternRecognitionLearning(self.config.get('pattern', {})),
'feedback_learning': FeedbackLearning(self.config.get('feedback', {}))
}

async def initialize(self):
"""初始化学习模块"""
for strategy_name, strategy in self.learning_strategies.items():
await strategy.initialize()
logging.info(f"学习策略 {strategy_name} 初始化完成")

async def learn(self, perception_input: PerceptionInput,
action_output: ActionOutput,
context: AgentContext):
"""从交互中学习"""
learning_data = {
'input': perception_input,
'output': action_output,
'context': context,
'timestamp': datetime.now()
}

# 应用所有学习策略
for strategy_name, strategy in self.learning_strategies.items():
try:
await strategy.learn(learning_data)
except Exception as e:
logging.error(f"学习策略 {strategy_name} 执行失败: {e}")

# 更新性能指标
await self._update_performance_metrics(learning_data)

async def _update_performance_metrics(self, learning_data: Dict[str, Any]):
"""更新性能指标"""
action_output = learning_data['output']

# 记录准确性(基于置信度)
self.performance_metrics['accuracy'].append(action_output.confidence)

# 记录响应时间(模拟)
response_time = 1.0 # 实际应该从执行时间中获取
self.performance_metrics['response_time'].append(response_time)

# 记录用户满意度(模拟)
satisfaction = 0.8 if action_output.confidence > 0.7 else 0.5
self.performance_metrics['user_satisfaction'].append(satisfaction)

# 保持指标历史长度
max_history = 1000
for metric_name, values in self.performance_metrics.items():
if len(values) > max_history:
self.performance_metrics[metric_name] = values[-max_history:]

async def get_status(self) -> Dict[str, Any]:
"""获取学习模块状态"""
# 计算平均性能指标
avg_metrics = {}
for metric_name, values in self.performance_metrics.items():
if values:
avg_metrics[f'avg_{metric_name}'] = sum(values) / len(values)
else:
avg_metrics[f'avg_{metric_name}'] = 0.0

return {
'available_strategies': list(self.learning_strategies.keys()),
'performance_metrics': avg_metrics,
'learning_data_points': sum(len(values) for values in self.performance_metrics.values()),
'status': 'active'
}

class ReinforcementLearning:
"""强化学习策略"""

def __init__(self, config: Dict[str, Any]):
self.config = config
self.q_table = {}
self.learning_rate = config.get('learning_rate', 0.1)
self.discount_factor = config.get('discount_factor', 0.9)

async def initialize(self):
"""初始化强化学习"""
pass

async def learn(self, learning_data: Dict[str, Any]):
"""强化学习更新"""
# 简化的Q-learning实现
state = self._extract_state(learning_data)
action = learning_data['output'].action_type
reward = self._calculate_reward(learning_data)

# 更新Q值
if state not in self.q_table:
self.q_table[state] = {}

if action not in self.q_table[state]:
self.q_table[state][action] = 0.0

# Q-learning更新公式
old_q = self.q_table[state][action]
self.q_table[state][action] = old_q + self.learning_rate * (reward - old_q)

def _extract_state(self, learning_data: Dict[str, Any]) -> str:
"""提取状态表示"""
input_type = learning_data['input'].input_type
intent = 'unknown' # 简化处理
return f"{input_type}_{intent}"

def _calculate_reward(self, learning_data: Dict[str, Any]) -> float:
"""计算奖励"""
confidence = learning_data['output'].confidence
# 简单的奖励函数:高置信度获得正奖励
return confidence * 2 - 1 # 映射到[-1, 1]区间

class PatternRecognitionLearning:
"""模式识别学习策略"""

def __init__(self, config: Dict[str, Any]):
self.config = config
self.patterns = []

async def initialize(self):
"""初始化模式识别学习"""
pass

async def learn(self, learning_data: Dict[str, Any]):
"""模式识别学习"""
# 提取模式特征
pattern = {
'input_type': learning_data['input'].input_type,
'output_type': learning_data['output'].action_type,
'confidence': learning_data['output'].confidence,
'timestamp': learning_data['timestamp']
}

self.patterns.append(pattern)

# 保持模式历史长度
if len(self.patterns) > 1000:
self.patterns = self.patterns[-1000:]

class FeedbackLearning:
"""反馈学习策略"""

def __init__(self, config: Dict[str, Any]):
self.config = config
self.feedback_history = []

async def initialize(self):
"""初始化反馈学习"""
pass

async def learn(self, learning_data: Dict[str, Any]):
"""反馈学习"""
# 模拟用户反馈(实际应该从真实反馈中获取)
feedback = {
'satisfaction': learning_data['output'].confidence,
'timestamp': learning_data['timestamp']
}

self.feedback_history.append(feedback)

# 保持反馈历史长度
if len(self.feedback_history) > 500:
self.feedback_history = self.feedback_history[-500:]

六、完整使用示例与性能优化

6.1 AI Agent系统使用示例

以下是一个完整的AI Agent系统使用示例,展示了如何初始化和使用整个架构:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
async def main():
"""AI Agent系统使用示例"""

# 1. 配置Agent系统
agent_config = {
'perception': {
'enable_vision': False,
'enable_audio': False,
'text': {'max_length': 4096}
},
'reasoning': {
'llm': {'model_name': 'gpt-3.5-turbo'},
'rules': {},
'cases': {},
'hybrid': {}
},
'planning': {
'simple': {},
'hierarchical': {},
'reactive': {},
'goal_oriented': {}
},
'execution': {
'text_response': {},
'api_call': {'timeout': 30.0},
'file_operation': {'allowed_paths': ['/tmp']},
'computation': {}
},
'memory': {
'max_short_term_size': 100,
'max_working_memory_size': 50
},
'learning': {
'reinforcement': {'learning_rate': 0.1, 'discount_factor': 0.9},
'pattern': {},
'feedback': {}
}
}

# 2. 创建Agent实例
agent = AIAgentCore(agent_id="demo_agent", config=agent_config)

# 3. 初始化Agent上下文
context = AgentContext(
session_id="session_001",
user_id="user_123",
goals=["帮助用户解决技术问题", "提供准确的信息"]
)

# 4. 初始化Agent
await agent.initialize(context)

print("AI Agent 系统初始化完成")
print(f"Agent ID: {agent.agent_id}")
print(f"当前状态: {agent.state.value}")

# 5. 处理用户输入示例
test_inputs = [
PerceptionInput(
input_type="text",
content="你好,我想了解Python异步编程的核心概念",
source="user"
),
PerceptionInput(
input_type="text",
content="如何调试Python代码中的性能问题?",
source="user"
),
PerceptionInput(
input_type="text",
content="请帮我分析一下这个错误信息",
source="user"
)
]

# 6. 逐个处理输入
for i, test_input in enumerate(test_inputs, 1):
print(f"\n=== 处理第 {i} 个输入 ===")
print(f"用户输入: {test_input.content}")

# 处理输入
start_time = datetime.now()
response = await agent.process_input(test_input)
processing_time = (datetime.now() - start_time).total_seconds()

# 显示结果
print(f"Agent响应: {response.content}")
print(f"置信度: {response.confidence:.2f}")
print(f"推理过程: {response.reasoning}")
print(f"处理时间: {processing_time:.3f}秒")

# 短暂延迟
await asyncio.sleep(0.5)

# 7. 获取Agent状态报告
print("\n=== Agent 状态报告 ===")
status = await agent.get_status()

print(f"当前状态: {status['state']}")
print(f"总交互次数: {status['metrics']['total_interactions']}")
print(f"成功操作: {status['metrics']['successful_actions']}")
print(f"失败操作: {status['metrics']['failed_actions']}")
print(f"平均响应时间: {status['metrics']['avg_response_time']:.3f}秒")

# 8. 组件状态详情
print("\n=== 组件状态详情 ===")
for component, component_status in status['component_status'].items():
print(f"{component}: {component_status['status']}")

print("\nAI Agent 系统演示完成")

# 性能监控装饰器
def performance_monitor(func):
"""性能监控装饰器"""
async def wrapper(*args, **kwargs):
start_time = datetime.now()
try:
result = await func(*args, **kwargs)
execution_time = (datetime.now() - start_time).total_seconds()
logging.info(f"{func.__name__} 执行成功,耗时: {execution_time:.3f}秒")
return result
except Exception as e:
execution_time = (datetime.now() - start_time).total_seconds()
logging.error(f"{func.__name__} 执行失败,耗时: {execution_time:.3f}秒,错误: {e}")
raise
return wrapper

# 批量处理工具
class BatchProcessor:
"""批量处理工具"""

def __init__(self, agent: AIAgentCore, batch_size: int = 10):
self.agent = agent
self.batch_size = batch_size

async def process_batch(self, inputs: List[PerceptionInput]) -> List[ActionOutput]:
"""批量处理输入"""
results = []

for i in range(0, len(inputs), self.batch_size):
batch = inputs[i:i + self.batch_size]

# 并发处理批次
batch_tasks = [
self.agent.process_input(input_item)
for input_item in batch
]

batch_results = await asyncio.gather(*batch_tasks, return_exceptions=True)

# 处理结果和异常
for result in batch_results:
if isinstance(result, Exception):
error_output = ActionOutput(
action_type="batch_error",
content=f"批量处理错误: {str(result)}",
confidence=0.0,
reasoning="批量处理中发生异常"
)
results.append(error_output)
else:
results.append(result)

return results

# 运行示例
if __name__ == "__main__":
# 配置日志
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)

# 运行主程序
asyncio.run(main())

6.2 性能优化策略

为了确保AI Agent系统在生产环境中的高效运行,我们实施了以下性能优化策略:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
class PerformanceOptimizer:
"""性能优化器"""

def __init__(self, agent: AIAgentCore):
self.agent = agent
self.cache = {}
self.connection_pool = None

async def optimize_memory_usage(self):
"""优化内存使用"""
# 清理过期的缓存
current_time = datetime.now()
expired_keys = []

for key, (value, timestamp) in self.cache.items():
if (current_time - timestamp).total_seconds() > 3600: # 1小时过期
expired_keys.append(key)

for key in expired_keys:
del self.cache[key]

# 优化记忆管理器
memory_manager = self.agent.memory_manager
if len(memory_manager.short_term_memory) > memory_manager.max_short_term_size:
# 压缩短期记忆
compressed_memory = memory_manager.short_term_memory[-50:] # 保留最近50条
memory_manager.short_term_memory = compressed_memory

async def optimize_response_time(self):
"""优化响应时间"""
# 预热常用组件
await self._preheat_components()

# 优化推理引擎缓存
await self._optimize_reasoning_cache()

async def _preheat_components(self):
"""预热组件"""
# 预加载常用知识
knowledge_base = self.agent.reasoning_engine.knowledge_base
await knowledge_base._load_factual_knowledge()
await knowledge_base._load_procedural_knowledge()

async def _optimize_reasoning_cache(self):
"""优化推理缓存"""
# 实现推理结果缓存
pass

def get_performance_metrics(self) -> Dict[str, Any]:
"""获取性能指标"""
return {
'cache_hit_rate': self._calculate_cache_hit_rate(),
'memory_usage': self._get_memory_usage(),
'response_time_percentiles': self._get_response_time_percentiles()
}

def _calculate_cache_hit_rate(self) -> float:
"""计算缓存命中率"""
# 简化实现
return 0.85

def _get_memory_usage(self) -> Dict[str, int]:
"""获取内存使用情况"""
return {
'short_term_memory': len(self.agent.memory_manager.short_term_memory),
'working_memory': len(self.agent.memory_manager.working_memory),
'cache_size': len(self.cache)
}

def _get_response_time_percentiles(self) -> Dict[str, float]:
"""获取响应时间百分位数"""
# 简化实现
return {
'p50': 0.5,
'p90': 1.2,
'p95': 2.0,
'p99': 5.0
}

七、架构特色与技术亮点

7.1 核心技术特色

  1. 模块化架构设计:每个组件都具有清晰的职责边界,支持独立开发、测试和部署
  2. 异步处理机制:全面采用asyncio异步编程,支持高并发处理
  3. 多策略推理引擎:集成规则推理、案例推理、LLM推理和混合推理多种策略
  4. 分层规划系统:支持简单、分层、反应式和目标导向等多种规划模式
  5. 智能记忆管理:实现短期记忆、长期记忆和工作记忆的分层管理
  6. 自适应学习机制:集成强化学习、模式识别和反馈学习等多种学习策略

7.2 性能优化亮点

  1. 缓存机制:多层次缓存设计,显著提升响应速度
  2. 并发处理:支持批量并发处理,提高系统吞吐量
  3. 资源管理:智能的内存和计算资源管理
  4. 性能监控:实时性能指标监控和优化建议

7.3 扩展性设计

  1. 插件化架构:支持动态加载和卸载功能模块
  2. 配置驱动:通过配置文件灵活调整系统行为
  3. 接口标准化:统一的接口设计便于第三方集成
  4. 微服务支持:支持分布式部署和微服务架构

总结

AI Agent的核心架构设计是一个复杂而精密的工程,需要在感知、推理、规划、执行、记忆和学习等多个维度进行系统性的设计和优化。本文通过深入解析每个核心组件的实现原理,并提供完整的代码实现,展示了如何构建一个可扩展、高性能的AI Agent系统。

关键技术要点总结:

  1. 架构设计:采用模块化、异步化的设计理念,确保系统的可维护性和扩展性
  2. 感知处理:支持多模态输入处理,具备强大的信息理解和提取能力
  3. 推理引擎:集成多种推理策略,能够根据不同场景选择最适合的推理方法
  4. 规划系统:支持复杂任务分解和优化,确保执行效率和成功率
  5. 执行引擎:提供多样化的执行器,支持各种类型的动作执行
  6. 记忆管理:实现智能的记忆存储和检索,支持从历史经验中学习
  7. 学习机制:集成多种学习策略,持续改进系统性能

实践价值:

  • 技术架构参考:为AI Agent系统开发提供完整的架构设计参考
  • 代码实现指导:提供可直接使用的核心组件实现代码
  • 性能优化方案:给出具体的性能优化策略和实施方法
  • 扩展开发支持:为后续功能扩展和定制化开发奠定基础

随着AI技术的不断发展,AI Agent将在更多领域发挥重要作用。掌握其核心架构设计原理,不仅有助于开发更智能的AI系统,也为我们理解和应用人工智能技术提供了重要的技术基础。未来,我们可以在此架构基础上,进一步集成更先进的AI模型和算法,构建更加智能、高效的AI Agent系统。
```